

On the multi-interval Ulam-Rényi game: For 3 lies 4 intervals suffice

Ferdinando Cicalese and **Massimiliano Rossi** Departement of Computer Science - University of Verona

Problem Statement

The rules of the game:

Paul and **Carole** fix a search space $S = \{0, ..., 2^m - 1\}$

and an integer $e \ge 0$.

Carole chooses a number $x \in S$.

Paul must guess x by asking questions of the form "does x belong to $T \subset S$?".

Carole can answer only "yes" or "no".

Carole can lie at most *e* times.

History

[1961] «... when only two things can be thought of and only one lie is allowed, then 3 questions are needed...» Rényi, A.

"On a problem of information theory"

[1968] «... at each stage the questioned set may depend on the entire past history of the game» Berlekamp, E. R.

"Block coding with noiseless feedback"

[1976] «... One clearly needs more than n questions for guessing one of the 2^n objects because one does not know when the lie was told...» Ulam, S. M. "Adventures of a Mathematician"

State of the art

[1968] Berlekamp, E.R. Lower Bound: min

$$|:min\left\{q \mid \sum_{j=0}^{e} \binom{q}{j} \le 2^{q-m}\right\}$$

Definition

Paul's **strategy** is **perfect** if it guarantees him to identify Carole's number *x* using at most the number of questions given by Berlekamp's **Lower Bound**.

Number of lies (<i>e</i>)	Solution for $S = \{0,, 2^m - 1\}$
0	Binary Search
1	[1987] Pelc, A.
2	[1989] Czyzowicz, J., Mundici, D. Pelc, A.
3	[1992] Negro, A. , Sereno, M.
е	[1992] Spencer, J.

Not all subsets available

Not all subsets available

Definition

Paul's **strategy** is **perfect** if it guarantees him to identify Carole's number x using at most the number of questions given by Berlekamp's **Lower Bound**.

Objective

Fixed the number of lies $e \ge 0$.

We want to find the **minimum k** such that there exists a **perfect strategy** which uses only **k-intervals questions**.

State of the art

Definition

Paul's **strategy** is **perfect** if it guarantees him to identify Carole's number *x* using at most the number of questions given by Berlekamp's **Lower Bound**.

Objective

Fixed the number of lies $e \ge 0$. We want to find the **minimum k** such that there exists a **perfect strategy** which uses only **kintervals questions**.

Number of lies (<i>e</i>)	Number of intervals	Solution $S = \{0,, 2^m - 1\}$
0	1/2	Binary Search
1	1	[2013] Cicalese, F.
2	2	[1997] Mundici, D. Trombetta, A.
÷	:	
е	$\frac{e^2+3e+2}{2}$	[2013] Cicalese, F.

Main Result

Definition

Paul's **strategy** is **perfect** if it guarantees him to identify Carole's number *x* using at most the number of questions given by Berlekamp's **Lower Bound**.

Objective

Fixed the number of lies $e \ge 0$. We want to find the **minimum k** such that there exists a **perfect strategy** which uses only **kintervals questions**.

Number of lies (<i>e</i>)	Number of intervals	Solution $S = \{0,, 2^m - 1\}$
0	1 / 2	Binary Search
1	1	[2013] Cicalese, F.
2	2	[1997] Mundici, D. Trombetta, A.
3	4	[2017] Cicalese, F. Rossi, M.
е	$\frac{e^2+3e+2}{2}$	[2013] Cicalese, F.

State Representation

Structure Property:

Every arc has neighboring arcs at exactly **one** level of distance. Well-Shaped State: a state σ is well shaped iff

- For $i = 0, \dots, e 1, \sigma$ has exacly 2i + 1 arcs lying on level i.
- σ has exacly e arcs lying on level e.

State Dynamics

Key Result

Definition

Given a state σ , let $ch(\sigma)$ be the minimum number of questions needed to find x according to the *Berlekamp's* **Lower Bound**.

Definition

A state σ is **final** if it contains only one element, and $ch(\sigma) = 0$

Theorem

Given a well-shaped state σ there is a **4-interval question** such that the resulting states σ_{yes} and σ_{no} are well shaped and $\max\{ch(\sigma_{yes}), ch(\sigma_{no})\} < ch(\sigma)$

Intuition

To keep max{ $ch(\sigma_{yes})$, $ch(\sigma_{no})$ } < $ch(\sigma)$ we **split evenly** each level between *yes* and *no*.

Intuition

To keep σ_{yes} and σ_{no} well-shaped we let the question **split** at most one arc per level.

Conclusion

Future Work

F.CICALESE M.ROSSI - ON THE MULTI-INTERVAL ULAM-RÉNYI GAME: FOR 3 LIES 4 INTERVALS SUFFICE

F.CICALESE M.ROSSI - ON THE MULTI-INTERVAL ULAM-RÉNYI GAME: FOR 3 LIES 4 INTERVALS SUFFICE

F.CICALESE M.ROSSI - ON THE MULTI-INTERVAL ULAM-RÉNYI GAME: FOR 3 LIES 4 INTERVALS SUFFICE

